当前位置:绿化体育 > 体育资讯 > 正文

弹丸和足球的初速度均为v10ms方向向右「如图所示弹丸和足球的初速度均为10」

  • 体育资讯
  • 2022-10-23
  • 112
  • 更新时间:2024-07-02 00:29:45

当交流弹丸和足球的初速度均为v10ms方向向右,我们可能都知道,有朋友问如图所示弹丸和足球的初速度均为10,这究竟是怎么一回事呢?一起来看看吧。

本文目录一览:

2.有 一颗水平运动质量为m的炮弹, 其初速度v0 方向向右, 它在空中爆炸成两块,一个为m

以整个导弹为研究对象,取v0的方向为正方向.根据爆炸的瞬间系统在水平方向上动量守恒,得: Mv0=(M-m)v′+mv 则得另一块的速度为:v′=Mv0?mv M?m 若 Mv0>mv,则v′>0,说明另一块沿v0的方向飞去;若 Mv0<mv,则v′<0,说明另一块沿v0的反方向飞去;若 Mv0=mv,则v′=0,说明另一块做自由落体运动.故选:ABC.

弹丸和足球的初速度均为v10ms方向向右「如图所示弹丸和足球的初速度均为10」  第1张

足球的质量为1千克,以10米每秒的初速度沿粗糙的水平面向右运动,球与地面间的动摩擦因数为0.2,同时球...

假设前3秒球没有变方向。a1=F/m+mgu=5

V1=10 10/5=2秒。

在第二秒时球停止运动。S1=10米

2到3秒时,a2=F/m-mgu=1方向向左。无风时a3=ug=2

从改变方向到停止S2=0.75米

总运动情况球向右运动10-0.75=9.25米

线圈炮的原理及分类

线圈炮种类繁多,名称混乱,因而应对线圈炮进行科学分类,以利于研究和发展线圈炮。从驱动线圈和弹丸线圈间的电关联分类,线圈炮可分为两大类:一是两线圈间的电关联分类,线圈炮可分为两大类:一是两线圈间有直接电联系的线圈炮。例如,电刷换向型线圈炮;二是两线圈无直接电联系的线圈炮。例如,感应型和无刷换向型线圈炮。从基本工作原理看,所有线圈炮都按直线电动机原理工作。依据直线电动机的原理和电物理特性,可把线圈炮分为5类:

(1)两线圈均为直流,类似导轨炮,此为直流直线电动机型,我们定名为螺旋线圈炮;

(2)弹丸线圈携带直流,驱动线圈使用交变电流,此为同步电动机型,我们称其为直流电枢分立驱动的线圈炮;

(3)驱动线圈用脉冲电流分立激励,弹丸线圈电流是由此感生的,此为准直线感应电动机型,我们定名为同步感应线圈炮;

(4)驱动线圈使用多相交流产生磁行波,借其滑差速度在弹丸线圈内感生电流,此为直线感应电动机型,通常称为异步感应线圈炮;

(5)磁行波“拉”着磁化弹丸前进,此为另一种直线同步电动机型,定名为磁化弹丸行波炮。 螺旋线圈炮的特点有二,一是驱动线圈由长螺线管构成;二是两种线圈的电流基本是单相直流。

电刷换向的螺旋线圈炮也叫螺旋导轨炮,这是因为它用两条馈电导轨供电,通过馈电电刷和换向电刷使两种线圈携带相同值的电流。导轨除馈电外,尚有导向电枢(弹丸线圈)的作用。实质上它是由导轨炮拓扑而成的线圈炮,即把导轨和电枢拓扑地绕制成驱动螺线管线圈和弹丸线圈。又因为使用直流,所以电刷换向螺旋导轨炮工作也是基于直流直线电动机原理,是一种直流型线圈炮。依据此原理可做成各种各样的电刷换向螺旋线圈炮。图3-8(a)是其中常用的一种,另一种常用的如图3-10(a)所示。

在图3-10(a),有三个馈电电刷和三个换向电刷,它们把螺线管驱动线圈分成前后两个激励区,弹丸螺线管线圈的电流方向与前激励区的电流方向相同以产生拉力,与后激励区的相反以产生推力。实际上,这是一个并联的电刷换向电路,馈电导轨由电源供电,弹丸线圈和前激励区串联作为负载获得同样电流,而后激励区是另一个负载。弹丸线圈中心与前后激励区中心的距离各约为一个电感长度(lm),以便获得更大互感梯度。 电刷换向的缺点在于滑动接触和摩擦,这就导致弹丸速度不能有更大的提高,一般认为在3km/s以下。为了克服电刷换向的缺点,出现了无刷的螺旋线圈炮。

无刷螺旋线圈炮的主要特点在于:两种线圈之间不用电刷换向,无滑动接触,仅存在磁耦合;使用开关换向同步地控制速度;驱动线圈和弹丸线圈各有自己的电流源,两种线圈的电流值各不相同,一般弹丸线圈电流比驱动线圈电流小。

1.消磁波线圈炮

消磁波线圈炮是一种压缩磁场前沿的线圈炮。在消磁波线圈炮中,用于发射弹丸的能量石以磁能方式在发射前储存在螺线管形的驱动线圈内,驱动线圈便是储能电感器。弹丸线圈通过导向和馈电的导轨由另一直流电源供电(或直接由超导体携带永久电流)。当弹丸线圈进入到螺线管炮尾时,从驱动线圈后沿开始使用换向开关,视弹丸线圈位置同步地快速向前,以消去驱动线圈的电流。由于弹丸线圈电流与剩余的驱动线圈电流同向,弹丸线圈被吸引着快速向前运动,如图3-16(a)所示。被消去线圈电流的磁能,一部分转移到前面已激励的 螺线管驱动线圈中去,另一部分转变成用来加速弹丸的动能,还有一部分已其它形式损失掉。

驱动线圈充电时,开关S1闭合,炮工作时,驱动线圈的线匝短路和断开顺序表示在图3-16(b),驱动线圈和开关的电流表示在图3-16(c)上。当弹丸线圈进入驱动线圈后朝前运动时,用开关使弹丸线圈前面的第二个驱动线圈短路,同时闭合第二个开关S2,由于携带电流的弹丸线圈运动,将在短路的驱动线圈匝内产生一感应电压,使短路匝的电流减少,同时开关电流将增加到驱动线圈的满载电流值。当短路匝的电流变为0时,就断开与这些匝串联的那个早先已闭合的开关(S1)。然后随弹丸线圈前进,再闭合S2,再断开S2,开始下一个循环,这样周而复始的进行下去,弹丸线圈随着螺线管驱动线圈后沿各匝磁场的顺序消失而前进。

2.外电压换向的线圈炮

和其它无刷换向的螺旋线圈炮一样,外电压换向的线圈炮允许独立地调节加速磁场和弹丸线圈电流。它虽然具有线圈电流小的优点,但却增加了复杂性。

虽然这种线圈炮结构大体上和以电刷换向的线圈炮类似,也是长螺线管驱动线圈,但有一定的差别。主要差别在于无电刷和使用外电压换向,亦即使炮管驱动线圈有限激励区的前沿匝电流上升和后沿匝电流下降。但此结果是由外电压产生的,并非由运动感应换向引起。这样,就对弹丸线圈电流无阀值要求,电流可以小一些,而驱动线圈的磁场强度可以更高。

外电压换向线圈炮的结构与图3-8(a)所示的类似,虽无电刷,但有两个弹丸线圈。炮管线圈的局部激励借助于两个外电源(图3-17)。开始激励区(线圈1~6)各线圈内均为满载电流,如图3-17(a)所示。其余线圈的电流均为0.随着炮管线圈电流激励区和弹丸线圈移动一个线圈间距,线圈7的电流由0上升至I(满载),而激励区后沿的线圈1内的电流由原来的满载值降至0.也就是说,把一高电压加到激励区前沿,使其电流从0上升至I;把一低电压加到激励区后沿,使其电流回降至原零值。之所以出现这种现象,是因为在炮管线圈上交错地外加两个电压源,炮管线圈电压由这两个电压源提供,它们工作在不同的电压水平,把激励区后面的磁能转移到前面去,不通过电源就能进行能量传输,其中一个是低压电源GL,随激励区后沿磁场的衰减,它从线圈1吸收功率;另一个是高压电源GH,随着激励区前沿磁场的上升,它向线圈7提供功率。但是,激励区后沿的大量磁能量是与后面的线圈2和3相关的,这些能量可直接转移到线圈5和6,因此在线圈2和3上的电压升超过线圈5和6的电压降,这样致使能量向前转移。

弹丸线圈加速会死,GL电源以相反极性的电压工作,并成为一个能源。从线圈1返回的能量减少了对GL的输出要求,但不需要GL接收能量。结果,在发射期间由两电源提供的能量恰好等于弹丸动能和炮管线圈的欧姆损失之和。 直流电枢分立驱动的线圈炮也是无刷换向的线圈炮。它的显著特点是:弹丸线圈电流为直流;驱动线圈沿炮管分立或分段,激励电流为脉冲的;多半用开关换向。这种线圈炮最早是由美国普林斯顿的麻省理工学院提出的,当初从用途角度称它为“质量驱动器(mass driver)”;我们以其原理和特点,称它为直流电枢分立驱动的线圈炮。图3-19是这种炮的一种典型结构图(剖面图)。

弹丸线圈可以是一个或多个,也可各个分立,每个可用多匝导体(如铝)制成。通过其上的馈电电刷与四条导向馈电导轨滑动接触而从直流电源获得直流。若用超导体时,用导向板代替导轨,起磁悬浮和导向作用。

根据对弹丸的速度要求,沿炮管分立若干驱动线圈,它们由一个或多个电源馈电,通常用电容器组作为电源。当弹丸线圈到达某驱动线圈附近时,该处传感器发出信号,触发相应电源的开关,对该驱动线圈放电激励。这种炮是用开关换向的。这些驱动线圈可以交错地单相、双相或多相地排列和激励。顺序、同步地快速触发开关放电而形成一个前进的“磁行波”,像同步直线电动机那样带着弹丸线圈前进。一般,越接近炮口驱动线圈的匝数越少,这是因为越接近炮口弹丸速度越高,要求激励脉冲电流应有更短的上升前沿,因此只有少匝数构成的低电感才能做到。若使用超导体做驱动线圈,将会提高效率、减小炮体积和简化电源。 弹丸线圈电流为感生(非外电源直接馈给的线圈炮,统称为感应线圈炮。感应线圈炮是线圈炮中最为重要的一种,因为它相对简单有效,所以它是最有前途和最有潜力的线圈炮。历史上曾称其为“感应加速器”、“感应质量驱动器”,甚至称其为“无源同轴加速器”。实际上,感应线圈炮只有两大类:分立驱动线圈的同步脉冲感应线圈炮和连续驱动线圈的异步感应线圈炮。前者又有单级和多级之分。同步脉冲感应线圈炮的弹丸线圈电流是由单相的驱动线圈同步脉冲放电感生的,多级工作时类似直线感应电动机。异步感应线圈炮的驱动线圈是连续的绕组,多相激励,弹丸线圈借助滑差速度感生电流,即以纯粹的直线感应电动机原理工作。

1.同步感应线圈炮

上世纪60年代中期,由于磁通压缩、反作用发动机和金属成形等相继得到应用,使单级感应线圈炮得以问世和发展。单级感应线圈炮结构极为简单,一般由储能电源(如电容器组)、开关、驱动线圈和弹丸线圈(或被驱动环)组成,如图3-24(a)所示。通常驱动线圈和弹丸线圈是同轴和等直径的,这是为了保证磁耦合最紧密。当脉冲电流加到驱动线圈时,弹丸线圈交链磁通感应出一方向相反的环形电流,此环形电流与两线圈间的磁场相互作用产生安培力,此力驱动弹丸线圈朝前运动。由于在弹丸线圈内感应的电流与驱动电流反向,所以在脉冲感应线圈炮中只存在推斥方式的驱动力。

多级脉冲感应线圈炮是由多个单级线圈串列而成。每当弹丸线圈到达驱动线圈的适当位置是,使该驱动线圈放电,其磁场在弹丸线圈内变化,以感生电流。驱动线圈是分立的,一般每个驱动线圈各有自己的独立电源,并由开关同步转换。弹丸线圈可以是多匝闭合线圈,也可以是金属套筒(即单匝弹丸线圈)。由于利用同步放电和弹丸线圈内磁通变化感应加速,故称之为同步感应线圈炮。

2.异步感应线圈炮

异步感应线圈炮的驱动线圈串联或并联成多相绕组的连续绕圈形式,由多相(常为三相)电源激励,产生一个像异步(或感应)电动机旋转磁场那样的直线行波磁场,行波速度较弹丸线圈速度快,借助其滑差速度引起相对运动,在弹丸线圈内感生电流,行波磁场“拉”着弹丸线圈前进。由于弹丸线圈加速需要的速度越来越高,因此应当把整个驱动线圈分成若干段。为了获得从一段到另一段相速增加的行波,或者增加激励电源的频率,或者增大驱动线圈的极距(半波长)。由于弹丸长度相对短,所以过大地增加极距是不实际的,因此沿炮管长度增加谐振频率较为合适。可以每段使用一固定频率,仅逐段增频便可。由此可见,异步感应线圈炮各段的激励频率是不同的,故可使用不同频率的发电机或不同谐振频率的电容器电路做异步感应线圈炮的电源。

图3-31表示异步感应线圈炮的原理。以一定的相位差对驱动线圈多相绕组交流激励,会像异步感应电动机那样在线圈附近产生一径向磁场,此磁场沿炮管近似正弦分布。由于激励电流随时间变化,该磁场沿炮管以波(相)速度vw前进。 用一磁行波场梯度加速已磁化的弹丸,其加速性状取决于弹丸的磁化方向,并以此决定弹丸是“骑”在磁行波波峰的前面还是后面(图3-46)

抗磁性材料(铜、铋、金、锌、铅、硫等)的弹丸,其相对磁导率μ1.在外磁场B0作用下产生的附加磁感应强度B`的方向与B0相反,磁化强度M0的方向也与B0的相反,所以弹丸被行波磁场的峰值推开一定距离;而顺磁质材料(锰、铬、铂等)弹丸,其相对磁导率μ1,B`方向与B0的相同,M0也与B0方向相同,所以弹丸被行波磁场的更大值牵拉着走。 磁阻线圈炮是利用线圈的铁磁磁路的磁阻变化吸引铁芯运动来加速铁芯弹丸的。它与普通线圈炮的不同之处在于:一是弹丸为一整块铁磁材料,被加速的不是弹丸线圈或管状弹丸;二是在炮系统中引入铁磁材料,虽然这对炮的性能有某些影响,但效率比空心线圈炮高;三是由于铁磁材料在磁路中出现,将给分析到来非线性问题,因而在确定加速力和绕组电感时,应当使用计算机有限元编码。

磁阻线圈炮由一系列螺线管驱动线圈和铁磁材料的磁轭铁芯组成,如图3-49所示(图中仅画出对称的一半)。所谓磁阻,是指阻止线圈周围磁路建立磁通的阻力。显然,在线圈腔管内放置铁磁材料能减少磁阻。当铁芯运动时,环绕线圈的磁路的磁阻将发生变化,于是就对铁芯弹丸产生了作用力。铁磁材料的铁芯比被它取代的空气有更大的磁导率(μp1)。当铁芯行进到线圈中心时,磁通较容易形成和通过,这是因为磁路的空气隙变小,磁路的磁阻也小,此时对铁芯的作用力亦最小。当铁芯从线圈中心移开时,原来拉铁芯向前的磁力现在变为拉铁芯向后,因此,当铁芯到达线圈中心后必须立即采取某些措施以使它不被拉回。应特别注意,铁芯弹丸仅受拉力,而不受推力作用,它不具备某些线圈炮在适当选择两种线圈电流方向时可对弹丸可拉、可推的优点。